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A stochastic description of a spin-; particle in a 
magnetic field 

G F De Angelisi and G Jona-LasinioS 
Centre de Physique Theorique, CNRS, Luminy, Marseille, France 

Received 16 December 1981 

Abstract. We develop the stochastic mechanics of a non-relativistic quantum particle with 
spin in a possibly inhomogeneous magnetic field. We do not make any assumption on 
the inner structure of the particle, and we treat spin components as discrete random 
variables. 

1. Introduction 

A still open problem within Nelson’s stochastic mechanics (Nelson 1966, 1967) is the 
description of particles with spin, in particular spin-; particles. 

Attempts in this direction have been based up to now on the Bopp-Haag model 
which interprets spinning particles as quantum rigid bodies. In this framework, to 
each smooth wavefunction without nodes is associated a diffusion process on the 
manifold R 3  x SU(2) which reproduces, at any time, the quantum averages for coordin- 
ates and spin (Dankel 1970, 1977, Dohrn et a1 1979). 

A possible difficulty with this approach is due to the assumption of an extended 
structure for the spinning particle which is not necessary in the usual quantum theory. 
As is well known, this extended structure produces an additional degeneracy of 
quantum states corresponding to a given spin, and, in addition, the variables describing 
spin components at the stochastic level of the theory are continuous random variables. 

Recently Faris (1982) has provided an interesting analysis indicating a mechanism 
which can lead to an effective discretisation of the spin components within this model. 

In this paper we take a more pragmatic point of view, and while we do not pretend 
to construct a model of the spin, starting from the Pauli equation in a possibly 
inhomogeneous magnetic field X ,  we associate to each smooth solution 

without zeros in &(x, *l), a Markov process & ( t )  = ( x ( t ) ,  c + ( t ) ) E  R3 xI-1, l} which 
reproduces quantum averages for coordinates and a selected component of the spin. 

By this procedure the usual discrete structure of spin components is preserved as 
they are always described by discrete random variables, and the class of processes 
associated to wavefunctions can be characterised by suitable fields on R 3  x {-1, I} 
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which remind us of the usual osmotic and current velocities for spinless particles and 
obey similar non-linear differential equations of motion. 

Our general approach is to start from quantum mechanics and try to interpret the 
continuity equation for l$,(x, a)]* as a forward Kolmogorov equationt. 

In order to illustrate our point of view, we consider the Schrodinger equation for 
a spinless particle in a magnetic field X = rot A 

with the associated continuity equation 

m 

Here the problem consists of finding a vector field b ( t , x )  such that (1.2) takes the 
Fokker-Planck form 

A p  - div bp 
A 

a r P  =% 

which is possible if 

(1.3) 

Of course, given +,, the solution b(t, x)  of (1.3) is not unique, but, under the additional 
restriction rot b = -(e/mc)&’ which implies that b is a gradient if e&’= 0, the only 
possible choice is the well known solution given by Nelson: 

We also observe that the above procedure can be immediately generalised to density 
matrices p with smooth kernel p(x, y )  strictly positive on the diagonal y = x  by the 
following general formula for the drift b(r, x): 

By using the expression (1.4) of b(r, x)  = u(t,  x) + u(r, x)  and the Schrodinger equation 
(1.1) for &, one gets the equation of motion for the osmotic velocity 

U = (h/m)V loglhl 

and the current velocity 

h Im Jr[V - (ie/hc)A]$, 
m I*r12 

U = -  

in the forms (Nelson 1967) 

a,u = -(h/2m)V div U -Vu 0 U 

a,o = - ( l / m ) V U  +$Vlulz -$VluIZ + (h/2m)Au 

t A similar approach is found in Onofri (1979). 
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which, of course, are equivalent to the Schrodinger equation for t+bf under the obvious 
restrictions on the initial data U&),  U&): rot uo =0 ,  rot U O =  - ( e / m c ) X .  

In the next section we shall try to follow the same scheme for a spin-t particle in 
a constant magnetic field X ,  and only later on shall we deal with the general case of 
inhomogeneous X .  

2. Constant magnetic field 

In a constant magnetic field, space and spin variables are not coupled, and if 

we can deal directly with the spin wavefunction Xf, as the diffusion process x ( t )  
associated to q,(x) is constructed in the usual way as explained in the Introduction. 
We normalise to 1 the magnetic moment of the particle and call s = (sx ,  s,, s,) the 
vector with components given by the Pauli matrices sa. To simplify our discussion 
as much as possible, we choose the usual representation of s, in which s, is diagonal, 
and we decide to associate a discrete random variable I Y E { - ~ ,  1) precisely to this 
component of the spin. 

The problem of formulating the theory in a rotationally invariant way will be 
discussed later. 

By denoting by cr a dichotomic variable with values * l ,  the equation for the spin 
wavefunction x, reads 

and the corresponding continuity equation for ~ X ~ ( I Y ) ~ ~  is 

dk,(c+)/2/dt = Im[(Xx + ~ I Y ~ , ) x ~ ( I Y ) x ~ ( - I Y ) ~ .  

We now want to interpret (2.2) as the forward Kolmogorov equation for a Markov 
process cr(t) with state space Z2 = {-1,l). which has the general form 

(2.3) 

where p( t ,  IY) is the probability distribution of cr(t), and p( t ,  IY) 3 0  represents the jump 
probability per unit time from the state IY E Z2 to the state -IY. 

By the identification p(t ,  IY) = (X~(IY)~~, our problem now consists of finding an 
expression for p ( f ,  IY) in terms of ,Y~(IY) in such a way that 

dp(t, cr)ldt = -p( t ,  I Y ) P ( ~ ,  g ) + p ( t ,  -m)p( f ,  -v) 

In (2.5) 4(t )  may depend on x f ( c ) ,  but only through combinations independent of IY 
and insensitive to an overall phase factor. The only possibility then is 4( t )=  
4 ( p ( t ,  IY) p(t ,  -U)). In order to complete our construction we must give a criterion 
which fixes 4. At this point we observe that our procedure depends only on the form 
of equations (2.2), (2.3) but not on the normalisation of p(t ,  IY) = l x r (~ )12 ,  and it is 
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rather natural to require that p ( t ,  a) be invariant (as the drift ( b ( f ,  x) in the usual 
Nelson theory) under the scale transformation xr-,hxr. The only way of doing 
that is to choose 4 as a constant independent of xt, and the minimal choice, under 
the positivity condition p ( f ,  a) 30, is 

2 112 4 = I zX * i zy I = ( zef + X, ) . 
In the next section we shall show that the constant (Xef + %';)1'2 is actually the correct 
one by an independent study of the ground state process. 

At this point we have completed the construction of the process a(r) associated 
to xt by the formulae 

P ( 0 ,  a )  = Ixo(d12 (2.6) 

We now want to characterise a ( f )  in terms of suitable non-linear differential equations 
by an analogy with (1.6). 

By defining .t(t, a), d ( t ,  a) as 

a ( &  a)  = Xz +a Re (XX -iaX,)- (2.8) 

we get, from (2.1), the equations of motion 

(2.10) 

It is easy to see that the processes constructed according to the rule (2.6), (2.7) can 
also be defined as the processes with probability distribution p ( t ,  a), and jump proba- 
bility p ( f ,  a) given by 

4 f , a ) - % z  t ( r ,  -a)-%)( P ( t , d )  = o  
( d ( f ,  U )  4 f ,  -a) P ( t ,  -a) 

p(t ,  a ) + p ( r ,  -a) = 1 (2.11) 

(2.12) 

where 2 ( t ,  a), d ( t ,  a) is any solution of the non-linear equations (2.10) with the following 
restrictions on the initial data: 

2 1/2- p ( t ,  a )  = ${[O' + ( a -  2,) 3 adt, a ) )  

Q o ( a ) . t o ( - a )  + d o ( - a ) . t o ( a )  = Xz ( Q O ( C )  + d o ( - a ) )  
(2.13) 

These, of course, are equivalent to (2.8) and (2.9) for a suitable xo(a) defined up to 
an overall phase factor and a normalisation scale. Notice that in (2.10) the different 
values of a are coupled only through the initial conditions (2.13). 

In the particular case X = (U,  0, 0), the quantum system (2.1) is formally equivalent 
to a Fermi oscillator with Hamiltonian 

~ o ( a ) ) o ( - a )  - Q o ( ~ ) d o ( - ~ )  = R Z ( . t O ( f l )  + . to ( -a ) )  - IX12. 

H = hwa*a =iiio(s, +isy)(s, -is,). 
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The resulting stochastic theory for the coordinate s, = a + a *  is a little bit different 
from the one developed in De Angelis et a1 (1981) except for stationary states. 

3. Stationary solutions 

Now we consider stationary solutions of (2.10) in the non-trivial case Xxe', + X; > 0 
where, by taking into account (2.13), we find 

/ ( U )  = 0 * ' (U)  = *Upcl (3.1) 

which correspond to the two stationary processes a*(t) defined by 

(3.2) 

According to (2.6), (2.7) we interpret a'(t) as the ground state processes and Y ( t )  
as the excited state process. We can define ~ ' ( t )  by deriving the corresponding 
transition probabilities P: (U, U ' )  from the Kolmogorov equation (2.3) to which are 
associated the generators L*: 

(L*f)(U) = p " ( d ( f ( - d  --f(U)). (3.3) 

W ' ( t ) )  = * W W l  
E(u*(o)u*(~))  = (XeS/IXI2)(1 t 20. 

In this way we can find the correlation functions, for instance 

(3.4) 

If Xz = 0 we recognise that a*(t) becomes a Poisson process and coincides with the 
ground state process described in De Angelis et a1 (1981). 

A check on the consistency of our scheme is provided by the following independent 
construction of the ground state process. Since the ground state wavefunction O( - ) 
does not exhibit zeros for X: +%e: >O, we can perform the well known unitary 
transformation (see Reed and Simon (1975) for elementary examples, and more 
generally Albeverio et a1 (1977)) 

X b )  + n- ' (dx(d  (3.5) 

which carries a(.) into the constant unit function U. 

EO subtracted, becomes the Kolmogorov operator -L given by 
Under this map the Hamiltonian H = -I% s -Eo, with the ground state energy 

( - L f ) b )  = tclxl - U X z ) ( f ( U ) - f ( - U ) )  (3.6) 

which coincides with the previously defined L' and is the generator of a Markovian 
semigroup 

where 

is the transition probability of the process m + ( f ) .  
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4. Invariance under the rotation group 

We end the discussion of the homogenous magnetic field case by removing the previous 
choice of a particular component of the spin, namely s,, as random variable; moreover, 
we generalise the theory by considering also non-pure states in spin space. 

Let ( be any state, pure or not, in the spin space and n some unit vector. 
According to quantum mechanics, the probability distribution of the observable 

(4.1) 

n *s at time t is given by 

p(t ,  cr) = & l +  n ' s), 
which obeys the continuity equation 

dp(t, cr)/dt = ScrH x n * (s),. (4.2) 

By repeating the steps of 9 2, we transform (4.2) in the Kolmogorov equation (2.4) 
with the general choice 

(4.3) 

and try to take 6 as a constant independent of the particular quantum state ( e ) .  The 
minimal choice which assures the positivity of p ( t ,  cr) is 

6 = 1 X x n l  (4.4) 
and with this particular choice of 4, the jump probability per unit time p ( t ,  cr) and 
the probability distribution p(f ,  cr) become 

(4.5) P( t ,  crI(.>, x ,  d=91 + n  * s), 

which, of course, reduce to (2.7), (2.8) for a pure state and in the special case 
n = (0, 0, 1). If U is an element of SU(2) and R ( U )  the associated matrix in SO(3) 
by U-'sU = R(U)s,  it is immediately seen that a simultaneous rotation of the state 
( e ) ,  the magnetic field %c and the unit vector n 

( 9 ) + ( )", x + R ( U ) X ,  n + R ( U ) n  (4.7) 

leaves the process (4 .9 ,  (4.6) unchanged. In this manner we see that our stochastic 
construction is rotationally invariant according to the isotropy of space. 

In the general case the quantities .t(r, a), o(r, U) of $ 2  are replaced by 

x x n  ' (s), 
( 1 + m  * S A  

and, if ( * ) is a pure state, still obey the equations (2.10). 

6( t, cr) = 

The new restrictions on the initial data of (2.10) are, of course, 

t l o (a ) *o ( -c r )  + cto(-cr)ro(a) = n * H(cto(a) + do(-cr)) 

*o(cr ) . to( -a)  - 6 0 ( c r ) Q o ( - c r )  = n H(*O(cr) + *o(-cr)) - /HIZ 

(4.8) 

(4.9) 

(4.10) 
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while the Markov process associated to a solution of (2.10), (4.10) is defined by 

p(t, a) = ;{[g2 + (.t - n * 3ep)2]1/2 - a46 a)} (4.11) 

which generalise (2.11), (2.12). The dependence of i' and 4 on a and n is again 
introduced by the initial conditions. 

5. Inhomogeneous magnetic field 

Starting from the Pauli equation 

h 
2m c 2 

iha& = - 4, + VI+& - - X  s$r (5.1) 

Of course, if R is homogeneous and $r(X, a) = qr(x)xr(a) ,  

h Im +r[V - 
b"(t, x) = b(t, x) = -(v loglq,l+ 

m 
and 

The Kolmogorov equation (5.4) then splits into two separate pieces, and we recover 
the ordinary Nelson construction and the stochastic theory of spin developed in 99 2-4. 

In the general case when (5.4) does not split, the two processes x ( t )  and a(t) in 
t ( t )  = ( x ( t ) ,  a ( t ) ) E  R3 x{--l, 1) are not independent, but the whole process t(r) can 
be defined by constructing its transition probability as the fundamental solution of 
(5.4) which is connected with the Kolmogorov operator 

h 
2m 

(Lrf)(x,v)=-Af+b" * V f + p ' ( t , a ) ( f ( ~ ,  - a ) - f ( ~ ,  a)) (5.7) 
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together with the initial probability distribution represented by 

P ; ( x )  = 5($o(x), (1 +an s)$o(x)) 

if $o( 0 )  is correctly normalised. 
As in the Introduction, we observe that the previous construction is by no means 

restricted to wavefunctions and can be immediately generalised to smooth density 
matrices p l ( x ,  y) = I l p ~ " ' ( x ,  y)I( verifying the condition of positivity Tr[(l+ 
a n  s)p, (x,  x)]>O, by the following natural extensions of ( 5 . 5 ) ,  (5.6): 

b"(r,x)=-(-Vlogp"+ A 1  Im[[Vr - (ie/Ac)Al Tr[( l  + a n  a S)pr(x, Y ) I I , = ~  
m 2  20 " 

Here, of course, 

p"(t,x)=tTr[p,(x,x)(l+an *s)]. (5.9) 

In the pure state case it is possible to characterise the processes constructed according 
to ( 5 . 5 ) ,  (5.6) by suitable equations of motion for the 'velocity fields' u"(t, x), u"(f, x), 
b"( t ,  a), gr(t, a) on R3x{ - l ,  1) defined according to 

u"(r, x)  = (h/2m)V log p v  

(5.10) 

x x n  * ($r(X), s$r(X)) 

($r(x), (1 +an s)$r(x)) 
/ ( f ,  a)  = 

in terms of which one can reconstruct p"(r, x), b"(f, x) and p'(f, a). In order to derive 
such equations it is expedient first to use the special choice n = (0, 0, 1) and then 
exploit the rotational invariance of the theory. By rewriting $,(x, a) as exp(RP(x)+ 
iSp(x)) and proceeding as in Nelson (1967), it is not difficult to see that 

aru" = -(A/2m)V div U" -VU" * U" +a(h/2m)Vax 

&ow = - ( l / m ) V U + ~ V l ~ " 1 ~ - t V l o " l ~ + ( A / 2 m ) A u "  +a(h/2m)V.tx, 

(5.11) 

where we use auf as a short notation for f(x, a) -f(x, -a). 
The equations (5.11) must be solved under the restrictions (4.10) and rot U; = 0, 

rot U: = -(e/mc)aCP on the initial data u:(x) ,  u : ( x ) ,  &(a), &(a) and, of course, are 
equivalent to the Pauli equation for $r.  
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As a last remark we observe that, if X ( x ) / l X ( x ) l  is a constant unit vector and n 
is chosen as % ( x ) / / X ( x ) I ,  the equations for . tx(t ,  a) and tl"(r, a) are solved by tlr(r, a) = 0 
and .t'(r, a) = lX(x) l .  

The resulting equations for U " ( &  x), v"(r,  x) 

a,u' = - (h /2m)V div U" -Vu" * U" 
(5 .12)  

are decoupled in a and describe two independent diffusion processes x * ( t )  clearly 
related to the whole process [ ( t )  = ( x ( t ) ,  a ( f ) )  by x * ( r )  = E ( x ( t ) l a ( r )  = *l), where 
E( .Ia(t) = *l) is the conditional expectation with respect to the spin process a(r) 
which, in turn, is trivial because p'(t, (T) = 0. 

This is an interesting case as it covers, for example, Stern-Gerlach-type experi- 
ments. 

d , ~ "  = - ( ~ / ~ ) V [ U - ( ( T ~ / ~ ) ~ % ~ ] + ~ V ~ U " ~ ~ - ~ V / U " ~ ~ + ( ~ / ~ ~ ) A U "  
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